4. STRAIGHT OBLIQUE WINGS

For applications to the type of oblique wings considered by Jones

(1971 , 1977), the center line can be assumed to be straight, i.e.
® = O,or[@ ]«l,and PDE (2.6) reduces to

‘[ ? A m A2 A — AgA + oo (‘0.‘)
| Kbz -2 ]+ € = 260 P25
subject to errors of OQ(€!). If the variable ; is taken as a normalized

time variable, (4.1) can be interpreted as one governing a 2-D transonic
small-disturbance flow near the quasi-steady limit, in which the RHS
A A
represents an unsteady correction. The perturbed solution Q.f(',""
’ + . " _ A
under @ = @ also admits alocal-similarity in ¢% and in Q'. applicable

to a rather useful class of wing geometry; the reduced problems in this

case can be solved once for all span stations. These will be discussed
in §§ b.1v and 4.2 below.

4.1 An unsteady analogy with a 2-D transonic flow

To bring out more precisely the nature of the analogy in question,

we introduce

—
ot T E

=8 ez, t2//e®. (4.2)

PDE (4.1) takes the form

Z(KWg-%opl]+Pei=2%¢. (4.3)

familiar in most nonlinear analysis of unsteady transonic flows (Landahl

AT 9545 5 IR T - 02 G

1962, Oswatitsch 1962, Timman 1962). The equations for the characteristics
and the shock relations, (2.11) and (2.14), also go over correctly, upon ﬂ
substituting (4.2), to the unsteady transonic system in question, and the i
continuity requirements on s; and ahf. (2.10), remain unchanged. The

wing boundary condition (2.9) becomes
At A A A - {
(7%) E 22 +-%Z +6(I+/kC}) (4.4) @;
£,- % of “ ;
A y ‘
The far-field description for @ = $.o- ey, +€fk:f:£ based on the expressions
for s. and 6, of (2.28) and (2.29), with 3/;$ replacing e@%; and@'go is L

precisely that describing the solution to (4.3) at large[é[ near the quasi-
. A
steady limit. One must note that the induced-upwash term Q@C,"i in GP.
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(4.2), cancels out the corresponding term in 63. from (2.29), and therefore,
the resultant far-field description for f is independent of the influence
of the wake vorticity. Hence, our inner airfoil problem is mathemat-

ically equivalent to that of a (special) unsteady transonic airfoil

pertaining to the nonlinear (lower-frequency) domain governed by PDE (4.3)

near the quasi-steady limit, with a wing-surface condition (4.4), and time-

dependent locations of the leading and trailing edges. The wake
influence of the oblique-wing, as well as the wing bend and wing twist,
thus, appear as additional incidence corrections in the equivalent unsteady
problem.

The foregoing examination indicates that the solution to the oblique-

wing problem can be generated froman unsteady 2-D calculation based on (4.3)

for which existing numerical procedures, e.qg. those using alternating
direction implicit algorithms similar to Ballhaus & Goorjiian (1977), can

be quite readily adopted. The crucial input to such an application lies,

of course, in the incidence correction, and, to fully utilize the (available)
computer storage and time for this purpose, the description for ¥ based

on (2.28) and (2.29) should be used at the far boundary. (The values of

[’r\'h 6: and 6: in (2.29) can be taken from those determined from the

previous time step.)

The approach via this unsteady analogy promises an alternative solution
procedure without the requirement for the local similarity (cf. (4.5) below), 3

as well as providing a method for capturing shock waves on oblique wings

without the difficulty associated with the reexpansion singularity discussed

earlier ( § 2.6).% Sample calculations via the unsteady analogy and their ¥
B

comparison with the perturbation solutions are given at the end of § 5 for
a subcritical case. From the viewpoint of unsteady transonic-flow analysis, a
it is of interest to point out that putting D= e@¥%p; =%¢ in (2.35), :

* With the inclusion of €® P2 on the RHS of (4.3), the unsteady analogy can .
be used as a procedure for solving PDE (2.6) with a nonvanishing center- !
line curvature.
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the treatment of the nonuniformity at the shock root presented in § 2.6

applies equally well to the corresponding problem arising from the unsteady _
perturbation considered by Ehler (1974), Traci, Albano & Farr (1976), |i
Hafez, Rizk & Murman (1977), Ballhaus g Goorjian (1978), Fung, Yu & Seebass
(1978), also Nixon (1978).+

4.2 Local similarities

Owing to the linearity, the 3-D correction to $ . 66, , can be de-
composed into suitably scaled separate parts. For a certain class of oblique-
wing geometry, these separate parts have similarity solutions independent
of ; , as does the basic solution 6%- This wing class requires, in addition
to GD'I 0, ora wnallﬁD'. that the basic wing section at each span station

be generated from a single airfoil shape of the same thickness at a fixed

incidence. More specifically, it requires a form of wing coordinates
A o~y a v’/\ A A
='=§-‘C(i)[°‘2( ) + Z,(?)nte,’c{--I(;‘)] (4.5)

A
where C(§) is the ratio of the local wing chord C(g)to the root chord G, .
Implicit is that 2' O is a straight axis on the wing; the planform, as well
as the functions 2;(’) and'I(f) are otherwise quite arbitrary.

For this case, we introduce the variables ( with b’z secAb )
Ku¥/ez2x/cp), TaE/e=2d3/cp), T wia §2770,(4.6)
and assume
#/6= 9, +e®E 3, u[fE.(f’f(f)'f(y) 4@2‘(7)]4’;; -
—efK CE ¥ o (4.7)

where z 3’ and 0‘ are independent of y , and cldc/dy The separation

into $ and $ allows the induced-upwash effect to be treated independently

of the spanwise-compressibility correction. The PDE (2.20) and (2.22)

+
In the last two works cited, the reexpansion singularity and the resulting
anomaly does not appear, its absence is presumably a consequence of the 1
assumption of a plane, normal shock stipulated therein.
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become in this case

*

-;[KJ’.;? - ﬂ-(¢,g)] }i‘ X 0 (4.8a)
{[K" s $'?]:7" X :-fl '(4“)3'.?2'3 }
-2 (RiF e £5%)

i[K - (4w Pog . B ”5 - (m)bo,;’?}

..9? 32 _

The right-hand member of (4.8b) arises from /a5 = /9y - /) (R + 7Y

I
The conditions on wing surfaces and the wake, (2.21) and (2.23), qive

ROL=AZY, (1F)20. 3 A)=1

and

18:0=0%¢] =0, lﬁrﬂ=ﬂ$,sﬂ=0, (e8] 0. (4.10a.b.c)
Tv TV Tv TvY Ty ™

A
Consistent with the similarity structure of 9,’3 . (4.7), the equa-
tion of the shock boundary (2.25) takes the form

R/8=%2(8) + e® TH)R(E) ¢+ €[ K, i) e f(;‘),@ 2; ] @),

The Rankine-Hugoniot relations transferred to the unperturbed shock

boundary, i.e. (2.26) and (2.27), now read as at K = ?:(i‘.).*
K, - (4~)<$,g>: -(32;’/9;)2’ (4.12a)
2 i:o—(iﬂ) < Zﬁg + X’ 8;',;;>= - 2(’2’0%2)("-’/;2), (4.12b)
- (10 &z + & Qo) = ~20%%2) (%8), o

P
b These jump conditions for ai and P are not the same as those for the
(formal) weak solutions of PHE (4.8b) and (4.8¢).
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and

08, 1=0¢+3°0,z]=08+% 820 =0. (4.13a,b.c)

Approaching the outer limit, ’?,:’?/t,-ow , PDE (4.8a,b) admits

the developments
;@[mi'({-) + Fsgn€] + (B, T+ B/ T)/E)
%'?" )[ln fIfK..Q/m‘] /g; ter (holka)
&, ~ m” P 1 ng| .4_*’ ( ){z(lnla) +2 ?lg b ] -

RGO R VAN

+...Llul§ [tﬂn (}%‘{v)* %S’nf] +
(p - B, )k, z)l/{g] (4.14b)

~ ,—,Htan Gor)+ Fomt) +
+ (@ 8Kt ’ﬁ 'ﬁ [l"'?' + Ka ;Vk;"l'] :'/I?I‘*

H(BRBLE) /1N« (4. 14c)

These results are recoverable (completely) from the far-field expansion

for 3: 6\.'( $.4»--- in the more general case, (2.28) and (2.29), .
through transformations (4.6) and (4.7) and the relations for the coefficients t;
=R - s It
)T' ”"O/C D.-Bo/et, 5: 0 "K ( )z C (‘*'5)
~
~‘._ A @ n")/\, A
y ,-m(,—r—é’:c In¢, (4.16a)

6,’- ; '&(ﬁ)tlne, (4.16b)

lﬁ=®€€'lﬁ +[/F..tf',"*f +@f;]ﬁ . (4.16¢)




We note that, according to the last of (4.16),
~
1 d Ar N (,")’ a |
—e. 22 = - — -t Z“ +
The 3 in(lne ot) above explains the formal difference of(z«"l?’ *‘gL) in
(2.30) and lnlé'l in the second term inside the curly bracket in (4.14b).

The source strength és' can be explicitly evaluated in terms of fi’
and f:‘ in this case with the help of the Green theorem, unaffected by the
presence of imbedded shocks (Appendix 111),

N = 4nm o ~ \2 e
Q=%0; *8"‘.}(/. (F)-[3+8 CEB’]

where 3':£/£ and F:S‘/E: 2+@  are the leading and trailing-edge locations
in ;' , respectively.

With d:f known, ways to control the induced upwash by wing twist and
wing bend through (4.7) are evident. From the form of solution (b.?)'tho
similitude of the 3-D0 flow structure is also apparent. In flow regions
removed from shocks, the local pressure coefficient C;‘ z(P’Pﬂ)/P.U:

can be correlated as
(4-63:)/e@ = F (.42, &), ws

. - A . 4
independent of y , where € is the local value of C} computed accord-

”
P2-D
ing to the 2-D theory after an incidence correction

s, = a,€[K, €' . (4.18b)

The 3-D effects on the field near the shock and the shock boundary itself

may also be correlated through (4.11) = (4.13), excluding the vicinity of b
the shock root. In the latter, the pressure field should be correlated H

in the original form of the Oswatitsch & Zierep (1960), shown in (2.39).
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5. COMPUTATION METHODS AND EXAMPLE: STRAIGHT OBLIQUE WINGS

5.1 Remarks on examples and comparison

Demonstration of solutions to the reduced problems of the theory is
an essential part of the present study. This is so, not only because it
affords an opportunity for assessing the adequacy of the present approach
as an aerodynamic-analysis method, but because the existence and uniqueness
of the solutions to the reduced problems have not been thoroughly investi-
gated. This demonstration is given below for the class of straight oblique
wings, for which similarity solutions exist , thus the sweep and other 3-D
effects can be more clearly delineated with the least geometrical complexity.
In the following, the computation procedure is described (‘5 5.2), shock-
free examples (including two with slightly supercritical component flows)
are presented ( § 5.3). Comparisons with corresponding solutions from
3-D, full potential computer programs (the Jameson FLO 22) will be discussed
in § 5.4. A comparison with solutions obtained via the unsteady analogy
is also shown in § 5.5. Numerical solutions involving imbedded shocks,
which require treatment of the logarithmic singularity at the shock root,
are the subject of a separate paper.

The present theory is limited by the assumptions of a high aspect ratio
and of the small disturbance; it is uncertain without a demonstration that
the solutions may adequately predict the (inviscid) aerodynamic characteristics
to a degree enjoyed by the classical lifting-line theory. In addition, the

possibility of conmitting algebraic errors is not low. This, together with

the two limitations mentioned, makes direct comparison with more exact (3~D é
full potential) solutions essential. ?3
The limitation on the computer storage available to the current 3-D
flow-field computation programs is well known. With this limitation, it
is not clear whether the grid distributions in these programs are suffi-
ciently refined for the purpose of describing the induced up-wash of the
trailing vorticities of the far wake, so crucial to a high aspect-ratio

wing. This uncertainty is erased, however, by the consistently good
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. +
comparisons shown below.

5.2 Computation procedures

Line-relaxation methods are used to solve the algebraic systems of
e ~

the difference equations for the similarity solutions *n y as, and ¢: :
the methods employ Murman's type-sensitive difference operators, including
a shock-point operator (Murman & Cole 1971, Murman 1974). The basic com-
puter code for &E is adopted from one used earilier in Hafez & Cheng's
(1977a & b) studies, improved in the far-field description with (4.14a)
and in the use of a higher-order convergence acceleration scheme (Meng
& Cheng 1977). The double! strength f;: and tx: in {(4.143) are determined
by a least-square fit of data near and at the far boundary. The inclusion
of the doublets and the nonlinear terms shown in (4.14a) have improved sub-
stantially the accuracy and internal consistency of the numerical solutions
at the far boundary; this results in a two to five percent (2-5%) change
in the surface pressure. The basic program will also furnish input data
for the relaxation solutions involving shock-fitting algorithms (Hafez &
Cheng 1977b), the latter is not needed, however, in the shock-free examples
considered below.

The procedures for ai and &a solving the linear PDE's, with conditions

on the x-axis and the far-field description,(b.S)-(b.IG). are similar to

that for a;. The programs are simpler in that the transition boundary

is fixed to the sonic boundary of ;i , but it requires a larger storage '1
for the inclusion of 3 ln addition to the ¢£obta|ned in pre\uous iterations. 3
The same grid with nonunuform mesh is employed for ¢. . ¢' , and ¢, , cover- “
ing a region|X | £ 5, |€] £ 6, with a total of 81 x 65 grid points. The 1

leading edge is made to locate at x = -/, and the trailing edge at xz=1

(i.e. f:-l,s'-'- |), any departure of @ from unity is accounted for by

i Unpublished studies by Ronald C. Smith at NASA Ames Research Center appears ]
to have raised doubts on certain earlier results from the 3-D, full po-
tential program (FLO 22) used for oblique-wing analyses. We also point
out that currently available 3-D computer programs based on the transonic L g
small-disturbance equation (e.g. Bailey & Ballhaus 1972) are inapplicable ?
to wings without bi-lateral symmetry. Therefore, comparisons with 3-D
small-disturbance computer solutions have not been made.
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changing X into[f’-}(,-&)] in (4.8) through (4.16). The case K] =1

corresponds to an oblique-wing planform with fore-and-aft symmetry about

the (straight) center line. The Kutta condition is implicit in the programs

in requiring the continuity of 3,,; ,3;2’ ands;f at the trailing edge.
The iterative solutions use a relaxation factor 1.3 in the elliptic
region and 0.8 in the hyperbolic region; typically, 200 line-sweeps are
needed for the convergence of the circulations to within |0‘5. The cal-
culation for aa involves more work, and requires twenty-five (25) minutes

on an IBM 370/158 Version 111, using double-precision arithmetics.+

5.3 Examples of solutions

As examples, we apply the solution procedure to oblique wings with
(ad
the section function :z ﬁy)generated from the NASA 3612-02,40 airfoil,
scaled to an arbitrary thickness. This airfoil has been used in various
wind-tunnel and preliminary-design studies of oblique wing at Mach number
between 0.60 and 1.4 (Black, Beamish & Alexander, 1975; Jones 1977). For
the present purpose, we assume that the straight axis (&= 0) to coincide
with the mid chord of each wing section; the spanwise distribution of the
wing chord, is, however, left arbitrary. In this application,it suffices
to set the ratio of the thickness and camber parameters‘ﬁﬂg equal to unity,
replacing all & by T in scales entering the definitions of Z and &; 3
~Nr o~ ~
as well as k;, C) and € . The determination of ¢{, ¢,,and ¢! requires
the specification of the component similarity parameter K;.
-~

Three sets of results for wing-surface distribution of (ai)i‘, (¢,)2’.

o~ ; g :
and(%);‘( are presented in Figs. 3 and 4. The first set (Fig. 3) is com-

~

puted for K,= 3.6 with Zi(ﬂ’) taken from the rescaled coordinates of
NASA 3612-02, 40 at zero incidence.’’ The second and the third sets

~
i A computer program similar to that for @5 has been considered in the
context of a straight unyawed wing by Small (1978).

++The coordinates of the airfoil section NASA 3612-02,40 may be expressed as,

with §'2 (x'-x15)/ ¢y,
zy,occ(,-) = (0.078/1.20) &' (1-€*) * {0-’0/?' *f'f" 0.9087 ¢
+g'(a.5638 +&'(-0.0236 ¢+ 0-370‘!(’))]}
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(Figs. 4a, b & c) are computed for a lower similarity parameter, K,=3.45,
which gives a slightly supercritical 2-D component flow in $ ; the airfoil
section and incidence in the second set (solid curves) is the same as in

the first; the third set (dash curves) differs from the second only because
a nonzero incidence 4o = 0.0SBZt(radian) is added to dzsll/dx',T From these
results, the pressure coefficient CPE(P'PD)/fP-U: on the wing surfaces

is calculated from

s cosA G =-2 cos’ji(g—‘)%{ (& )z +
*GQ%\({’:); * fok: d?:?;‘ﬁ?ﬂ@%](ﬁ);} (5.1)

In Fig. 3, the computed surface distribution of (é:);‘v’ (&7);‘*, and
(&;)'; are presented as thin solid curves, heavy solid curves, and dash
curves, respectively, with the itallic "u"and ”z," referring to the upper
and the lower surfaces. The peak of(&:)g occurring near the mid-chord
point lies slightly below the critical value K,./((«)=‘-50- The surface
values of (&)7 which arises from the spanwise variation of the compress-
ibility correction are seen to be numerically small as compared to (&:)";
The latter accounts for the incidence correction and includes the far-wake
vorticity influence. The circulations gixisn by the juEp of ’;o 5 $,,

~ . . -
¢z at the trailing edge are found to be ”:— 2.048, ﬂ"' = ~0.494, a/rld
"7’_ = -2.667, respectively. Their contributions to the potential ¢ at

and

the trailing idge, henci, the rolling moment about the wind axis, are
weighted by C , €®) 6:76, and €é fEne"",f.;@E;], respectively. l~:8r a
planform which is symmetrical with respect to ?’:o (noty=0), ﬂ':, is
also symmetric. The induced upwash in this case is positive (f‘; <o) on
an aft panel and negative(ff)O) on a fore panel, as noted earlier.
Therefore, the last two of the three weighting factors mentioned are both
negative on an aft panel and positive on a fore panel. It is, thus, seen
from this example that, with the negative [ﬁ and fr"; , the inviscid 3-D

effects will give rise to an unbalanced rolling moment (as well as pitching

T For T =0.12, this amount of 4Aa gives an incidence of 0.40 degree.
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moment). The asymmetrical forces, if unchecked, will tend to raise the
aft panel and lower the fore panel.

The least-square fit of the doublet strengths determined from the
relaxation solution $. of FI(_L: 3 are E; = 0.2472 and B'; = 0.0958;
with these and the value of [[, = 2.048, the source strength in the far
field for &: is determined from (4.17) as 5' = 0.9270. We note in
passing that the program for computing a; is relatively straightforward

~
and the result can be reproduced quite well by computing 4{ at a slightly

~
different incidence, taking the difference of the two 4%3 , and normalizing.

To assess the relative importance of these contributions, we apply
the results of Fig. 3 to an elliptic planform with a major-to-minor axes
ratio of 16.78 at 30" yaw. Assuming a 6% thickness ratio for each wing
section, we have for this example € = O.ISZZ,C) = 1.337 (corresponding to
M, = 0.7615, and%: 0.8793 under K, = 3.6). No wing-bend is considered,
but a uniform fk?) corresponding to an (overall) incidence adjustment is
chosen to eliminate 3-D effects on the total lift (this is possible owing
to the pure antisymmetry of the 3-D effects in this special example). The
resultant distribution of &;g on the upper surface at the span station
y = 0.80 is shown as a dotted curve in Fig. 3. A small region of super-
critical component flow is seen, which in this case is brought about mainly
through the upwash induced by the wake vorticities.

The corresponding results for the other two sets shown in Figs. 4a, b
and ¢ are similar, with the noticeable difference being the appearance of
supercritical regions on the upper surface in the leading approximation
(&E)T . The computation does not experience convergence difficulty and

examination of the solution does not reveal evidence of shock waves in

these cases. For the second set with K,= 3.45 and Aol = 0 (zero incidence),
~ fad -~
the solutions give [[j = 2.0712, lﬁ = -0.5291, [Ty = -2.6839, p = 0.2549,

6‘:— 0.0071 and 6: = 0.9530; for the third set with K.= 3.45 and an
incidence of 0.4° corresponding to de/g = 0.0582, the corresponding results
ﬁ - ~ " ~ 2 Ve ~c ;
are Tg= 2.2828, [, = -0.5427, My = -2.2118, ) = 0.2614, D, = 0.02578,

and § = 0.9893.
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5.4 Comparison with full-potentipl, 3-D solutions

The similarity solutions 6;;'. ;:: and 3.2’ shown in Figs. 3 and 4 can
be applied to examples of transonic oblique wings of various combinations
of AQ’,‘t.Jﬁ as long as the component similarity parameter K, is unchanged.
The wing aspect ratio and the spanwise distribution of the local wing chord
can be quite arbitrary.

Surface distributions of € have been obtained in several cases
for the purpose of comparison with solutions from o computer program based
on a 3-D full-potential equation. In this connection it is essential to
differentiate the significance of the critical pressure coefficient corre-

sponding to a local sonic speed,

Vg -1
c*o 2 ”(m)/z] i . ,} (5.2)
P ™ "‘fﬂ1: ’

and that corresponding to the sonic condition in the component flow, namely,

v - Y4-1) 4
e _ 2 ([ @2 - 1§ cos™A (5.3)
P 4M" ""i!M:

For the viewpoint of swept-wing nvrodynamicx,(;: is relatively trivial,
inasmuch as a three-dimensional flow with Cg < CP" can readily be rendered
shock-free by providing a sufficiently large wing sweep. The value of

¢ ® of (5.3) is very well approximated by that deduced from the present

P

study
Y3
C"___ of 2 Kn t
P=-2(3) cosAgEs (5.4

The difference between (5.4) and (5.3) apparently depends on L;.’(,_M:) .
which are found to be less than 2% ﬂn‘ﬂdnas low as 0.65.

It may be pointed out that existing 3-D computer codes based on the
full-potential equations do not account (correctly) for the departure of
the trailing vortex sheet from a planar (flat) surface. Thus, its validity
also requires the small-disturbance assumption, strictly speaking. The
value of the program lies, of course, on its ability to describe the flow
field around the leading edge and near the trailing edge, where the small-

disturbance approximation breakdown or becomes less accurate, assuming
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that problems of convergence with respect to mesh size, and to iteration,
may not cause inaccuracy.

Numerical results comparable with our solutions are generated from
one version of A. Jameson's 3-D full-potential computer codes ''FLO 22"

(c.f. Bauer, Garabedian, Jameson & Korn 1974, Jameson 1974), which is used
with implementations for oblique-wing analyses at NASA Ames Research Center
Aeronautics Division and at Grumman Aerospace Corporation Research Depart-
ment.+ The algorithms employed in FLO 22 are not fully conservative, but
this may not be essential for shock-free solutions presented below. We
point out that the FLO 22 data from Ames and from Grumman are not identical
owing mainly to the use of different meshes. The availability of data

from two sources is helpful in delineating the nature of discrepancy between
our theory and the more exact 3-D program. Data from the latter is still
influenced by the mesh size, spacing of the span stations, number of iterations,
the detail of the leading-edge geometry description, which are different in
Ames and Grumman runs.

A number of FLO 22 runs have been made with free-stream Mach number,
swept angle, wing-thickness, etc. chosen to give either K,=3.6 or K,= 3.45,
employing the same basic airfoil section. An elliptic planform is used in
each case; wing twist and wing bend are assumed to be zero. Comparisons are
made in Fig. 5-7 for three cases and may be considered being typical among
most runs.

The oblique elliptic wing considered in Fig. 5 has a 6% thickness ratio,
with the major-to-minor axes ratio of 20, and a sweep angle of 22.50. The
free-stream Mach number is Mg= 0.8242 in this case. This makes the free-
stream component Mach number M, = 0.7615 and K”.: 3.60,@ =1.003 and
€ = 0.1277 in our analysis. The pressure coefficient for the critical com-
ponent flow in this case is C:‘ = -0.470. The surface Cb values at three
span stations, y =-0.69, y =@ and y = 0.69 are shown in Fig. 5a, Fig. 5b
and Fig. 5c, respectively. The FLO 22 data from Ames (in small crosses and

v " and from Grumman (in small open circles) are seen to be quite close

- The FLO 22 data generated at the NASA Ames Research Center were kindly
provided by Mr. Ronald C. Smith, and the data from Grumman Aerospace
Corporation were made available to us by Dr. Rueben Chow.
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except near the leading edge.+ Near the leading edge, the small-disturbance
assumption of our theory alsobreaks down as noted earlier. The agreement
of the FLO 22 data with our values computed on the basis of data from Fig. 3
(in solid curves) must be considered as being better than anticipated,
inasmuch as the relative error in our theory is of an order determined by
the larger of 1;”’ and ez (to be precise). In the present case, 't'/’ = (0.06)2/3
= 0.153!

Encouraging is that the dearee of agreement with the FLO 22 data appear
to deteriorate little with increasing wing-thickness ratio or reducing aspect
ratio. Results of comparisons for elliptic wings with a 12% thick airfoil
section and a major-to-minor axes ratio of 14 are shown in Figs. 6 and 7.
The case considered in Fig. 6 has a free-stream Mach number 0.7549, a yaw
angle  30°. This gives M,= 0.6538, K, = 3.60, € = 0.1448, and @ =1.062;
also C:': -0.727. The Cp values (compted from the present theory, based
again on data of Fig. 3) are presented for five span stations in heavy curves

with open circles; the corresponding FLO 22 data (from NASA Ames) are pre-

B 4 i . - . - .
sented as thin curves. Agreement similar to that found in Fig. 5 is again

found in Fig. 6 except at the stationg 7::0.8«) which are rather close to ’
the wing tip.

In Fig. 7, the thickness ratios and aspect ratio remain the same as in
Fia. 6, but Mgz 0.7677 and A= 307, This gives M= 0.6648, C'* = -0.689, i
and K”= 3.45. For this, the C} value in the present theory is computed on
the basis of our data from Fig. 4. The results are presented in Fig. 7 for
seven span stations: y~= 0, +0.20, £0.59, £ 0.79. The degree of agree-
ment with the FLO 22 data (from NASA Ames) is again similar in the preceding
comparisons. In this case, a small supercritical region appear in the aft
wing panel, as anticipated (there are at least three surface grid points in

the supercritical reqion).

& The two sets of FLO 22 data also differ near the wing tips ( ;::o.,o)
not shown.

++ s 2
Note that, there are considerably more data points than the numbers of
the open circles shown.
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The reader is called to the attention that thec'distributions are not
the same in different span stations, therefore, the comparisons made with i

the FLO 22 data have provided a meaningful test for the theory. One of

Lok

the major contributions to the 3-D effects is the incidence correction which
accounts for the upwash induced by the wake vorticities, computed from
\[’(ﬂ'(3.9) via (3.10) and (4.16a). The adequacy of this upwash calcu- 4
!

lation has already been demonstrated in examples pertaining to the linearized

problem (Cheng 1978a & b); therefore, the good agreement reported here should

et d

not be too surprising. Worthy of note in this connection is the use of the

transonic similarity parameter K.'-'(I-M:)/dv’ M, , and the retention

¢ . . -~ . . .
of the cos A factor in computing ¢og andCb. which prove to be crucial in
maintaining an accurate leading approximation, and is partly responsible

for the good agreement achieved here.

5.5 Comparison with solutions via the unsteady analogy

To demonstrate the degree to which the unsteady transonic analogy can

be utilized for the oblique-wing analysis, we include here a comparison of
the local-similarity solutions for pon-lifting oblique wings with the f
corresponding results generated by a numerical procedure using an ADl algo-

rithms similar to those in Ballhaus & Goorjian (1977).+ As pointed out in

f
§lo.l. the case involving lift (ﬂ’°¢ O)requires an implementation at the 'F
far boundary for the unsteady analogy, not needed for the example considered f
here. The result is nevertheless of interest in that the 3-D correction, H
in this case,is given entirely by the compressibility effect resulting from
spanwise density variation mentioned earlier. For this purpose, we consider
oblique wings with a symmetric airfoil section NACA 64006 at zero incidence,
and compute % for K,= 2.50; (cf. § 5.2) the result for the surface pressure
coefficient Cr'(.):: -2&)"'(6;)7 was computed for T=0.06 and M _=0.827

- The unsteady transonic code used in this study was made by Dr. Tom Evans
during 1977 on leave from the University of East Anglia, Norwich,
England. {
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* ®
%7((h¢))_ (?g zg) (P7"’ ? oy ( c"‘(/d) 3

g A1 {,,2[,‘(4 <) - 2xk),) - 16x(8) (%), ] +

J2K,,
%‘j—( ) + 8)‘(¢)(4))x/ o
4 .
~;(¢‘)x19_; ["’c(s"/)sz’”/x-s’d‘s} (111.18)
a
This gives
24 (4+1)
0550 = 2 5Tl s 908 {212 (4ay, L4l -2ntou21)-
<16 % (%) LD ] + 2 3 LoD + 8x(h), L4 -
b
'% ¢cxxﬂa% F.(s5y) 5 ln|x~5]|ds (111.19)
a

We observe that, over the wake portion,
®?
CL2%c/an]l=0 (111.20)
T

since l}" and ¢cx is continuous across the x-axis downstream of the T.E.
Since ¢:c does not give rise to a source in the far-field, we have,
as lg’l—b o0 , a source strength for ¢:c as (recalling '""A ' has been

A A
omitted from ¢‘ andQ‘ )

)

b
Ql‘ Qn:_i%f Lo /a’lﬂdx

n

WY p—
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b
4+ @ X(%) E¢cxﬂ dx +
zx,, 4

(#/)@ h/
gKIm 47 K ®/x”"’1’¢‘"dx by

& {H @/1”,‘”1] /—/ (5;y) S Lln|x-s|ds

(ree.21)

The above result for straight oblique wings(with @',-‘_- O) does not
require the assumption of a local similarity in the 3-D structure. In
cases in which the 3-D similitude applies, the far-field source strength i
éz for the similarity solution 25, cf. (4.14b), can be determined from
(111.2) through (4.16b)

6 5
= =, 1 .. M lnc y
' @cc¢ 4mK2
noting in thlS case that 9/0 (6'/2)[?3/39- ;’;7/3;']’ and using (4.15)
A ;
to relate ﬂ" r’ and Do'- to ”’,:, 5: , and 6:'. The final result for

the source strength in the far-field 6" is (withp-a=2)

~2
- 4
Q. - ? D 87rKn ”Z [34’0 +4(I+3)J (111.22)
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FIGURE CAPTIONS

Figure 1 Il1lustration of the reference chord, the span and the aspect
ratio used for a straight oblique wing(a), a more general curved ob-
lique wing(b), and symmetric swept wings(c); the shaded areas in (c)
indicates regions of breakdown. Breakdown (nonuniformity) of the theory
may also occur in the tip region (cf. text).

Figure 2 ITlustration of the Cartesian and the orthogonal curvilinear
coordinate systems in the wing plane ( Z=%=0).

Figure 3 Examples of ¢°g . &g, and ¢3; on the upper and lower surfaces
of a straight oblique wing at K.= 3.6. The airfoil section is NASA

3612-02, 40 rescaled to an arbitrary thickness.( Refer to text for results

shown in dots); wing has no twist and bend; local incidence is zero.

Figure 4(a) Results for a straight oblique wing at Ka= 3.45 at two inci-
dences: A =0 (in solid curve) and A o=0.5824 (in dash curve).
Distribution of &, 5 -

A

Figure 4(b) (Continued) Distribution of ¢,;;'.

>~

Figure 4(c) (Continued) Distribution of ¢g',‘£ :

Figure 5(a) Comparison with a major to minor axes ratio of 20 at 22.5°
sweep and a free-stream Mach number 0.8242. The present result is shown

i'rl solid curve. This graph givesCPdistrubution at the span station
y =.-0.69.

~

Figure 5(b) (Continued) Span station ¥ = 0.

Figure 5(c) (Continued)Span station ¥ =.69.

Figure 6(a) Comparison for a 12% thick elliptic oblique wing with major to-
minor axes ratio of 14 at 30° yaw and Mo = 0.7549. This graph gives
surfacerat span station ;’:-0.89.

Figure 6(b) (Continued) Span station ¥ =-0.69.

Figure 6(c) (Continued) Span station ¥ =0.

Figure 6(d) (Continued) Span station y=0.69.

Figure 6(e) (Continued) Span station y=0.89

Figure 7(a) Comparison for a 12% thick, elliptic oblique wing with an axes

ratio 14 at 30° yaw and Mg = 0.7677 This graph gives surface C’at span
station ¥=-0.79.
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Figure 7(c) (Continued) Span station

Figure 7(d) (Continued) Span station y=o.

Figure 7(b) (Continued) Span station ¥ =-0.59. ;
y

Figure 7(e) (Continued) Span station y=0.20.

Figure 7(f) (Continued) Span station ¥y=0.59
Figure 7(g) (Continued) Span station ¥=0.79.
Figure 8 Surface distributions of $,; on a nonlifting oblique wing with

an airfoil section NACA 64006 for a component similarity parameter of
Ka= 2.50. The surface value of ﬁ; can be recovered from the CPIOO)
distribution shown (cf. text).

Figure 9 Comparison of surface G on a nonlifting elliptic oblique wing

obtained from local-similarity solutions (in discrete symbols) with
corresponding numerical data via the unsteady analogy (in solid curves).
The airfoil section and K, value are the same as in Figure 8, and G@ is
taken to be 0.10, using $,'; for case (A) of Figure 8. The Cp' is computed
for a 6% thickness ratio and M,= 0.827. The latter conditions together
with G@ = 0.10, gives M.= 0.3595 and R'.: 22.6 for a sweep angle of

A: 22.50,

Figure 10(a)Comparison of surface CP' on a nonlifting obique wing of len-

ticular planform from the local-similarity solution's (in discrete

symbols) with the corresponding numerical data via the unsteady analogy
(in solid curves). The airfoil section and Kavalue are the same as in
Figure 8, and €®) = 0.10, using @,g for case(A) of Figure 8. This graph
shows results for three span stations on the aft panel,?’: 0, 0.5 and

0.8.

Figure 10(b) (Continued) Span stations on the fore panel, ;’: -0.2 and -0.5.

Figure 11(a)Comparison of surfaceC; on a nonlifting oblique wing of

half-lenticular planform, with the straight axis at the leading edge.
The @',g' for case (B) is used for computing CP’ which is computed other-
wise in the same manner as in Figure 10. This graph shows results

for span station = 0, 0.50 and 0.80 on the aft panel.

Figure 11(b) (Continued) Span stations ;'.-_ -0.2, and -0.50 on the fore panel.

Figure 12(a)Comparison of surface C‘; on a nonlifting oblique wing of half-

Figure 12(b) (Continued) Span stations 'y": -0.2 and -9.5 on the fore panel. 1

Figure I1.1 Illustration of the wing boundary (W), the trace boundary (T),

lenticular planform, with the straight axis at the trailing edge. This
pertains to case (C) in Figure 10. The graph shows results for span
stations )7': 0, 0.50, and 0.80.

and the shock-discontinuity boundary (D).
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